TAUBERIAN THEOREMS AND TAUBERIAN CONDITIONS

BY G. G. LORENTZ

- 1. Introduction. The chief aim of this paper is an investigation of relations among Tauberian theorems. In §2 we compare "high indices theorems" or "gap theorems" with "order" Tauberian theorems containing a condition of the form $u_n = o(c_n)$ or $u_n = O(c_n)$. Especially for the methods of Abel and Cesàro we shall look for necessary and sufficient conditions on the numbers c_n , for which these theorems are valid.
- 2. Relations among Tauberian theorems. Let A be a Toeplitz-Silverman method of summation, given by the transformation

(1)
$$\sigma_m = a_{m1}s_1 + a_{m2}s_2 + \cdots + a_{mn}s_n + \cdots$$

of the sequence s_n into the sequence σ_m . We shall call the sequence s_n and the series $\sum u_n$ with the partial sums s_m A-summable to the value s, if $\lim \sigma_m = s$. We assume that the conditions of regularity for the method A are fulfilled. Then from $s_n \to s$ we have $\sigma_m \to s$. A Tauberian theorem for the method A is a proposition in which, conversely, $s_n \to s$ is deduced from $\sigma_m \to s$ and an additional condition on the series $\sum u_n$ or the sequences s_n . This latter condition is called a Tauberian condition for the method A.

Let n_k be a sequence $n_1 < n_2 < \cdots$ of positive integers. The following propositions are called high indices or gap theorems for the method A.

 (H_1) . If a series $\sum u_n$ is A-summable and satisfies the gap condition

$$u_n = 0, n \neq n_1, n_2, \cdots,$$

then the series is convergent.

(H₂). If the A-transform σ_m of the sequence $s_n = \sum_{k=1}^n u_k$ is bounded and if the series $\sum_{k=1}^n u_k$ is bounded and if

Let c_n be any sequence of numbers $0 \le c_n \le +\infty$. In analogy to the above propositions, we state the following Tauberian theorems containing an estimate of u_n .

 (T_1) . If a series $\sum u_n$ is A-summable and satisfies the order condition

$$(3) u_n = o(c_n)$$

then the series is convergent.

 (T_2) . If σ_n is bounded and

$$(4) u_n = O(c_n)$$

then s_n is also bounded.

Presented to the Society, October 25, 1947; received by the editors February 18, 1947.

Note that (3) and (4) impose no limitation for those u_n for which $c_n = + \infty$. Hence it may happen that a high indices theorem is contained in an order Tauberian theorem. See Theorem 3 which, for the Abel method, contains as special cases the Tauberian theorem with the condition $u_n = O(1/n)$ and the Hardy-Littlewood high indices theorem.

We now prove the following theorem.

THEOREM 1. If for the method A the high indices theorem (H₁) is valid, and if further

(5)
$$\sum_{n_k < n < n_{k+1}} c_n = O(1),$$

then (T_1) is also valid.

Proof. Suppose that, for an A-summable series $\sum u_n$, the condition (3) is fulfilled. Let $s_n' = 0$ when $n < n_1$ and $s_n' = s_{n_k}$ when $n_k \le n < n_{k+1}$, $k = 1, 2, \cdots$. Then by means of the estimates (3) and (5) we get $s_n - s_n' \to 0$. From the regularity of the method A we now have for the A-transform σ_m' of the sequence s_n'

(6)
$$\sigma_m - \sigma'_m = \sum_{n=1}^{\infty} a_{mn} (s_n - s'_n) \to 0.$$

Thus $\lim \sigma_m'$ exists, as according to the supposition $\lim \sigma_m$ exists.

The convergence of s_n' then follows from (H_1) , and because of $s_n - s_n' \rightarrow 0$ the sequence s_n is also convergent.

THEOREM 1*. If for the method A the high indices theorem (H_1) is valid for all series satisfying the additional condition

$$s_n = o(k(n)),$$

k = k(n) being defined by $n_k \le n < n_{k+1}$ and if

(7)
$$\sum_{n_k \le n < n_{k+1}} c_n = O(1),$$

then (T1) also is valid for A.

The proof is given in the same manner as above, the only difference being that we have to prove that $s_n' = o(k(n))$ for the sequence s_n' , in order to be able to use the theorem (H_1) . But according to (3) and (5), $s_n = o(k(n))$, hence the same estimate holds also for s_n' .

Similarly we can prove the following theorem.

THEOREM 2. The proposition (T_2) is a consequence of (H_2) if the c_n satisfy the condition (5).

THEOREM 2*. The proposition (T2) is a consequence of (H2) for all series

satisfying (7) and the additional condition

$$s_n = O(k(n)).$$

A further relation among Tauberian theorems can be obtained by means of the following theorem of Mazur and Orlicz [9] (1); we do not possess any proof of this theorem. If, for a regular method A, no unbounded A-summable sequences exist, then only convergent sequences are A-summable.

By application of this theorem to the method \tilde{A} with matrix

$$\tilde{a}_{mk} = \sum_{n_k \le n < n_{k+1}} a_{mn}$$

we obtain the following theorem. The high indices theorem (H₁) follows from (H₂).

In spite of their simplicity, these theorems seem to offer a certain amount of interest. By means of Theorem 1, o-Tauberian theorems can be derived with exact order of the u_n . Thus for example we deduce from the high indices theorem of Hardy and Littlewood [3], according to which (H_1) is true for the Abel (or Euler) power series method P when $n_k = 2^k$, the following theorem of Tauber. If the series $\sum u_n$ is P-summable and $u_n = o(1/n)$, then the series is convergent.

Furthermore, by use of a theorem of Pitt [12] and Theorem 1* we see that the estimate $u_n = o(n^{-1/2})$ implies the convergence of $\sum u_n$ when $\sum u_n$ is Borel summable. Pitt's theorem states that if, for a B-summable series $\sum u_n$, (2) is valid with $n_{k+1} - n_k \ge a(n_k)^{-1/2}$, a > 0, and $s_n = O(\lambda^n)$ for every $\lambda > 1$, then $\sum u_n$ is convergent. In fact we have only to observe that from $n_{k+1} - n_k \ge a(n_k)^{1/2}$, a > 0, we can easily derive $n_k \ge k^2/q^2$ with a certain constant q > 0. This means that for the function k(n), defined in Theorem 1*, we have $k(n) \le qn^{1/2}$. For a result, similar to Pitt's, for the method E_1 of Euler-Knopp, see Meyer-König [11].

It is scarcely possible to derive, by the same simple method, the exact O-Tauberian theorems containing the conditions $u_n = O(1/n)$ and $O(1/n^{1/2})$ respectively. These O-Tauberian theorems are connected with much more delicate properties of the matrix of a transformation than those made use of in Theorem 1. See, for example, Karamata [6, p. 20].

We shall deduce from Theorem 1* that Pitt's theorem cannot in its essentials be rendered more precise. For each $\epsilon > 0$, a > 0, and an increasing sequence of indices n_k with

$$n_{k+1}-n_k \leq a n_k^{1/2-\epsilon} \qquad (k=1, 2, \cdots)$$

a divergent B-summable series exists, satisfying $s_n = o(n)$ and (2). For obviously $k(n) \le n$. If there were no such series, then Theorem (H₁) with the

⁽¹⁾ Numbers in brackets refer to the references cited at the end of the paper.

additional condition $s_n = o(k(n))$ would be correct for the method B. Let $c_n = n^{-1/2+\epsilon}$, then (7) is fulfilled:

(8)
$$\sum_{\substack{n_k \leq n < n_{k+1} \\ n \neq k}} c_n \leq n_k^{-1/2 + \epsilon} (n_{k+1} - n_k + 1) = O(1).$$

Then according to Theorem 1* the condition $u_n = O(n^{-1/2+\epsilon})$ would be a Tauberian condition, and this for the method B is not the case for any $\epsilon > 0$ according to Hardy and Littlewood [2, p. 15].

- 3. The general forms of the O-Tauberian theorem for the Abel and Cesàro methods. We shall say that a sequence c_n , $0 \le c_n \le +\infty$ has the property (E) when
- (E) For each $\epsilon > 0$ there is a sequence of positive numbers n_k for which $n_{k+1}/n_k \ge q > 1$ and

$$\sum_{n_k < n < n_{k+1}} c_n < \epsilon.$$

It obviously does not matter whether we suppose in this condition the n_k to be any positive number or only integers. The supposition chosen renders the proof slightly easier. For treatments of general Tauberian conditions, see Pitt [12] and Agnew [1].

THEOREM 3. The condition (E) is the necessary and sufficient condition for the sequence $0 \le c_n \le +\infty$ in order that

$$(9) u_n = O(c_n)$$

is a Tauberian condition for the methods C_{α} ($\alpha > 0$) of Cesàro or the Abel method P.

Proof. (a) The condition (E) is necessary. We investigate the method C_1 and shall show first of all that, $\epsilon > 0$ being given, the indices n_k for which $c_{n_k} \ge \epsilon$ constitute a sequence with $n_{k+1}/n_k \ge q > 1$, if there is an infinite number of them. Otherwise we should have an $\epsilon_0 > 0$ and two sequences of integers m_k , l_k with $m_k < l_k < m_{k+1}$, $l_k/m_k \to 1$, $c_{m_k} \ge \epsilon_0$, $c_{l_k} \ge \epsilon_0$. By considering a partial sequence we can regard the following as fulfilled:

$$[(l_1-m_1)+(l_2-m_2)+\cdots+(l_k-m_k)]/m_k\to 0.$$

Under these conditions, let

$$u_n = + \epsilon_0$$
 $(n = m_k, k = 1, 2, \cdots)$
 $= -\epsilon_0$ $(n = l_k, k = 1, 2, \cdots)$
 $= 0$ (for all remaining n).

Then for the C_1 transform σ_n of the series $\sum u_n$ we have, when $m_k \leq n < m_{k+1}$,

$$0 \leq \sigma_n \leq \left[(l_1 - m_1) + \cdots + (l_k - m_k) \right] \epsilon_0 / m_k \to 0.$$

Furthermore $|u_n| \le c_n$. As the series $\sum u_n$ diverges, (9) would not be a Tauberian condition for the method C_1 .

We shall now prove, again for the method C_1 , that the sequence c_n has the property (E). Suppose (E) is not fulfilled. Then an $\epsilon_0 > 0$ exists for which there is no sequence of positive numbers n_k which fulfills the requirements of (E). Thus for every sequence n_k , with $n_{k+1}/n_k \ge q > 1$, $\sum_{n_k < n < n_{k+1}} c_n \ge \epsilon_0$ holds even for an infinity of k.

Let n_k^0 be a sequence as mentioned above, for which $c_n < \epsilon_0/3$ for $n \neq n_k^0$. We can suppose

$$1 < q_0 \le n_{k+1}^0 / n_k^0 \le Q_0 < + \infty$$
 $(k = 1, 2, \cdots).$

From the sequence n_k^0 we form the sequence n_k^1 whose elements are

Similarly from n_k^1 we form the sequence n_k^2 , and so on. Then for each sequence n_k^p we evidently have

$$1 < q_p \le n_{k+1}^p / n_k^p \le Q < \infty$$
 $(k = 1, 2, \cdots)$

where

$$q_p = (q_0)^{1/2^p}, \qquad Q_p = (Q_0)^{1/2^p}.$$

According to the above, we can find numbers

$$N_s = n_{k_*}^{p_s}, \qquad N_s' = n_{k_*+1}^{p_s}, \qquad (s = 1, 2, \cdots)$$

such that

(11)
$$N_s \to \infty, \qquad p_s \to \infty, \qquad N_s < N'_s < N_{s+1}, \qquad \sum_{N_s < n < N_s} c_n \ge \epsilon_0.$$

Since, according to (10), as $s \rightarrow \infty$,

$$0 \le \frac{1}{N_s} (N_s' - N_s) = \frac{N_s'}{N_s} - 1 \le Q_{P_s} - 1 \to 0$$

we can even achieve

$$[(N_1' - N_1) + (N_2' - N_2) + \cdots + (N_s' - N_s)]/N_s \rightarrow 0$$

by taking a partial sequence of the s.

As $c_n < \epsilon_{0/3}$ for $N_* < n < N_*'$ and on account of the last inequality (11) there is an \overline{N}_* between N_* and N_*' such that

$$\sum_{N < n \le \overline{N}} c_n \ge \epsilon_0/3, \qquad \sum_{N < n \le N, \epsilon} c_n \ge \epsilon_0/3.$$

(One has merely to choose a first \overline{N}_{\bullet} for which the first of these inequalities is fulfilled.)

We now define u_n to be positive in $N_s < n \le \overline{N}_s$ and negative in $\overline{N}_s < n < N_s'$ such that $|u_n| \le c_n$ and

$$\sum_{N_{\bullet} < n \leq \overline{N}_{\bullet}} u_n = \epsilon_0/3, \qquad \sum_{\overline{N}_{\bullet} < n < \overline{N}_{\bullet}} c_n = -\epsilon_0/3.$$

For the remaining n let $u_n = 0$. Then $\sum u_n$ is divergent and $|u_n| \le c_n$ holds for all n, but σ_m converges toward zero. For we have $s_n = 0$ for any n outside the intervals $N_s < n < N_s'$ and $0 \le s_n \le \epsilon_0/3$ within these intervals. Thus for $N_s \le n < N_{s+1}$ we have

$$0 \leq \sigma_n \leq \left[(N_1' - N_1) + (N_2' - N_2) + \cdots + (N_s' - N_s) \right] \epsilon_0 / 3N_s \to 0.$$

Hence (9) is not a Tauberian condition for the method C_1 . We thus have a contradiction.

Regarding the methods C_{α} ($\alpha > 0$) and P, the necessity of (E) follows for them from the fact that they contain the method C_1 . Finally according to a theorem by Andersen the methods C_{α} ($\alpha > 0$) and C_1 are equivalent for series with bounded partial sums; see, for example, Zygmund [14, p. 262]. Hence the above proof, making use of series of this kind only, remains valid for C_{α} , $0 < \alpha < 1$, as well as for C_1 .

(b) We shall now show that (E) is sufficient. This part of Theorem 3 is not new. It follows from a theorem of Pitt [12, Theorem 13]. Pitt considers more general methods, and his proof is much more complicated than the one given here. A proof of Agnew [1, Theorem 9.21] of a C_1 Tauberian theorem, with a very general Tauberian condition, is more like the proof given below. Suppose (E) and (9) to be fulfilled, and let s_n be P-summable. Since Ingham [4] has shown that the high indices theorem (H_2) for the Abel method is valid for any sequence $\{n_k\}$ with $n_{k+1}/n_k \ge q > 1$, we see in accordance with Theorem 2 that the sequence s_n is bounded. As the methods P and C_1 are equivalent for such sequences (see, for example, Landau [7, p. 12]), we first obtain the C_1 -summability of the sequence s_n . Its convergence follows in the known manner:

Without restriction of generality, we can suppose $|u_n| \le c_n$ and $\sigma_n = (s_1 + \cdots + s_n)/n \to 0$. We choose any $\epsilon > 0$ and a sequence n_k in accordance with (E). For all k_0 sufficiently large we have $|\sigma_n| < \epsilon$ for $n \ge n_{k_0} - 1$. Hence from

$$\sigma_{n_{k+1}-1} = \frac{s_1 + \cdots + s_{n_k-1}}{n_{k+1} - 1} + \frac{s_{n_k} + \cdots + s_{n_{k+1}-1}}{n_{k+1} - 1}$$

for $k \ge k_0$, $n_k \le n < n_{k+1}$ we have, on account of $|s_m - s_n| < \epsilon$ for $n_k \le m < n_{k+1}$, that

$$\sigma_{n_{k+1}-1} = \frac{n_k - 1}{n_{k+1} - 1} \, \sigma_{n_k-1} + \frac{n_{k+1} - n_k}{n_{k+1} - 1} \, s_n + \theta \, \frac{n_{k+1} - n_k}{n_{k+1} - 1} \, \epsilon$$

where $|\theta| < 1$. Thence we deduce for the s_n

$$\left| s_n \right| \leq \epsilon + \frac{2n_{k+1}}{n_{k+1} - n_k} \epsilon \leq \left(1 + \frac{2q}{q - 1} \right) \epsilon,$$

that is, $s_n \rightarrow 0$. This completes the proof of Theorem 3.

An analogous theorem can be proved for the one-sided Tauberian condition. Instead of condition (E), we now introduce condition (F) for the sequence $0 \le c_n \le +\infty$ which shall signify:

(F) For each $\epsilon > 0$, there is a sequence n_k of positive numbers with $n_{k+1}/n_k \ge q > 1$ for which

$$\sum_{n_k \le n < n_{k+1}} c_n < \epsilon.$$

Thus while in (E) the possibility $c_n = +\infty$ for an infinity of n was not excluded, nearly all c_n are finite in this case. The theorem mentioned can be stated as follows:

THEOREM 4. The condition (F) is the necessary and sufficient condition for the sequence $0 \le c_n \le +\infty$ in order that

$$(12) u_n \leq O(c_n)$$

is a Tauberian conditions for the methods C_{α} $(\alpha>0)$ of Cesàro or the Abel method P

Proof. (a) The condition (F) is necessary. We shall first prove that $c_n \rightarrow 0$. Otherwise there would be a sequence of indices $l_k \rightarrow \infty$ with $c_{l_k} \ge \epsilon_0 > 0$. We may suppose $l_{k+1} > l_k + 1$ and furthermore

(13)
$$k/l_k \to 0 \qquad \text{for } k \to \infty.$$

Let $u_n = -1$ when $n = l_k - 1$, $k = 2, 3, \dots$; $u_n = +1$ when $n = l_k$, $k = 2, 3, \dots$; and $u_n = 0$ for all remaining n. We have $u_n \le O(c_n)$ and the respective s_n constitute a bounded sequence. This sequence is C_1 -summable on account of (13), hence also C_{α} ($\alpha > 0$) and A-summable. But it is divergent and therefore (12) is not a Tauberian condition.

Now according to Theorem 3 the condition (E) must be fulfilled. This together with $c_n \rightarrow 0$ gives (F), if we omit some of the first n_k if necessary.

(b) The sufficiency of (F) can be deduced from a theorem by R. Schmidt [13, Theorem 11] according to which

(14)
$$\limsup_{\delta \to 0} \phi(\delta) \leq 0; \quad \phi(\delta) = \limsup_{m \to \infty} \max_{m \leq v \leq w \leq m(1+\delta)} (s_w - s_v)$$

represents a Tauberian condition for the Abel method.

Suppose (F) to be fulfilled. We then choose the sequence n_k for a given $\epsilon > 0$ in accordance with (F). If then $\delta > 0$ is so small that $1 + \delta < q$ and if

 $n_k \le m < n_{k+1}$, then surely $m(1+\delta) < n_{k+2}$ and therefore

$$s_w - s_v = u_{v+1} + \cdots + u_w \leq M \sum_{n_k \leq n < n_{k+2}} c_n < 2M\epsilon$$

with a constant M>0 for $m \le v \le m(1+\delta)$. Thus $\phi(\delta) \le 2M\epsilon$ and (14) is fulfilled. This completes the proof of Theorem 4.

Now we shall add some consequences to illustrate the applicability of the theorems proved above.

1. Let $\omega(n) \to \infty$ for $n \to \infty$. Then $u_n = O(\omega(n)/n)$ is not a Tauberian condition for the methods C_{α} ($\alpha > 0$) and P. (For the Abel method, this was proved by Littlewood [8].) For the condition (E) is not fulfilled here:

$$\sum_{n_k < n < n_{k+1}} c_n = \sum_{n_k < n < n_{k+1}} \omega(n)/n \ge \omega(n_k)(n_{k+1} - n_k - 2)/n_{k+1}$$

$$\ge \omega(n_k) \left(1 - q - \frac{2}{n_{k+1}}\right) \to \infty.$$

2. If c_n is not increasing, $u_n = O(c_n)$ or also $u_n \le O(c_n)$ is then and then only a Tauberian condition, when for every $\epsilon > 0$ there is a $\delta > 0$ such that for all n sufficiently large

(15)
$$\sum_{n < v < m(1+\delta)} c_v < \epsilon.$$

For (F) follows from this property of the c_n if we choose $n_k = (1+\delta)^k$ and add sufficiently many of the first integers to these n_k . Conversely, (15) follows from (F) or (E) as can easily be proved on the same lines as (b), Theorem 4.

3. Menchoff [10] published a theorem which implies that $u_n = O(c_n)$ with

(16)
$$\sum_{n=2^k}^{n=2^{k+1}} c_n = O(1)$$

is a Tauberian condition for the method P. This theorem was later withdrawn by him [10]. Now it is easy to form a sequence c_n for which (16) holds although (E) is not fulfilled. (For instance, let $c_2^k = c_2^{k+1} = 1$, and $c_n = 0$ for other n.) Hence (16) is indeed not a Tauberian condition.

4. If n_k is a sequence with $n_{k+1}/n_k \ge q > 1$ and if for a series $\sum u_n$ which is P-summable, $u_n = O(1/n)$ holds for $n \ne n_1, n_2, \cdots$, then the series is convergent. (For the Cesàro methods C_{α} , see Meyer-König [11].)

Let $c_n = M/n$ for $n \neq n_k$, $c_n = +\infty$ for $n = n_1, n_2, \cdots$. For a given $\epsilon > 0$ we then choose the sequence m_k such that it contains all the n_k and that $1 < q' \le m_{k+1}/m_k < 1 + \epsilon$. Then for every k we have

$$\sum_{m_{k} < n < m_{k+1}} c_n \leq \frac{M}{m_k} (m_{k+1} - m_k) < M \epsilon,$$

that is, the condition (E) is fulfilled.

5. Suppose $M_n \ge 0$ to be a C_1 -summable sequence. Then

$$u_n \leq M_n/n$$

is a Tauberian condition for the methods C_{α} and P. (See Karamata [5].)

We have only to prove that the numbers $c_n = M_n/n$ satisfy the condition (F). For a given $\epsilon > 0$ let $n_k = (1+\epsilon)^k$. We shall designate $\sigma_k = (1/n_k) \sum_{n < n_k} M_n$ and $\sigma = \lim_{n \to \infty} \sigma_k$. Then

$$\sum_{n_{k} \leq n < n_{k+1}} c_{n} \leq \frac{1}{n_{k}} \sum_{n_{k} \leq n < n_{k+1}} M_{n} = \frac{1}{n_{k}} (n_{k+1} \sigma_{k+1} - n_{k} \sigma_{k})$$

$$= \epsilon \sigma_{k+1} + (\sigma_{k+1} - \sigma_{k}).$$

For k sufficiently large $|\sigma_{k+1} - \sigma_k| < \epsilon$, $\sigma_{k+1} < \sigma + 1$ and therefore the sum to be estimated is less than

$$\epsilon(\sigma+1)+\epsilon=\epsilon(\sigma+2).$$

REFERENCES

- 1. R. P. Agnew, Tauberian conditions, Ann. of Math. vol. 42 (1941) pp. 293-308.
- 2. G. H. Hardy and J. E. Littlewood, The relations between Borel's and Cesàro's methods of summation, Proc. London Math. Soc. vol. 11 (1913) pp. 1-16.
- 3. ——, A further note on the converse of Abel's theorem, Proc. London Math. Soc. vol. 25 (1926) pp. 219-236.
- 4. A. E. Ingham, On the "high-indices theorem" of Hardy and Littlewood. Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 1-7.
- 5. J. Karamata, Théorèmes inverses de sommabilité I, II, Glas Srpske Kralevske Akad., Beograd, vol. 143 (70) (1931) pp. 3-24, 121-146.
 - 6. ----, Sur les théorèmes inverses des procédés de sommabilité, Paris, 1937, 46 pp.
 - 7. E. Landau, Neuere Ergebnisse der Funktionentheorie, 2d ed., Berlin, 1929, 122 pp.
- 8. J. E. Littlewood, The converse of Abel's theorem on power series, Proc. London Math. Soc. vol. 9 (1911) pp. 434-443.
- 9. S. Mazur and W. Orlicz, Sur les méthodes linéaires de sommation, C. R. Acad. Sci. Paris vol. 196 (1933) pp. 32-34.
- 10. D. Menchoff, Sur une généralisation d'une théorème de M. M. Hardy et Littlewood, Rec. Math. (Mat. Sbornik) N.S. vol. 3 (1938) pp. 367-373; vol. 5 (1939) p. 451.
- 11. W. Meyer-König, Limitierungsumkehrsätze mit Lückenbedingungen I; II, Math. Zeit. vol. 45 (1939) pp. 447-478; 479-494.
- 12. H. R. Pitt, General Tauberian theorems, Proc. London Math. Soc. vol. 44 (1938) pp. 243-288.
- 13. R. Schmidt, Über divergenten Folgen und lineare Mittelbildungen, Math. Zeit. vol. 22 (1925) pp. 89-152.
 - 14. A. Zygmund, Trigonometrical series, Warsaw-Lwów, 1935 331 pp.

FRANKFURT, GERMANY.